P. R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA

III B.Sc. MATHEMATICS - Semester VI (w.e.f. 2018-19)

Course (Elective VII (A)): LAPLACE TRANSFORMS

Total Hours of Teaching-Learning: 75 @ 5 h/week

Total credits: 05

Objectives:

10

- To understand the concepts of Laplace Transform and Inverse Laplace Transform.
- · To find the Laplace transform of some functions.

UNIT - I: Laplace Transform I

(15 hrs)

Definition of Integral Transform – Laplace Transform Linearity, Piecewise continuous Functions, Existence of Laplace Transform, Functions of Exponential order, and of Class A.

UNIT - II : Laplace Transform II

(15 hrs)

First Shifting Theorem, Second Shifting Theorem, Change of Scale Property, La place Transform of the derivative of f(t), Initial Value theorem and Final Value Theorem.

UNIT - III : Laplace Transform III

(15 hrs)

Laplace Transform of Integrals – Multiplication by t, Multiplication by tⁿ – Division by t, Laplace Transform of Bessel's function, Laplace Transform of error function, Laplace Transform of Sine and cosine integrals.

UNIT - IV : Inverse Laplace Transform I

(15 hrs)

Definition of Inverse Laplace Transform. Linearity, First Shifting Theorem, Second Shi fting Theorem, Change of Scale property, use of partial fractions, Examples.

UNIT - V : Inverse Laplace Transform II

(15 hrs)

Inverse Laplace transforms of Derivatives – Inverse Laplace Transforms of Integrals – Multiplication by spowers of p – Division powers of 'p'- Convolution definition - Convolution Theorem – proof and Applications – Heaviside's Expansion theorem and its Applications.

Prescribed Text book:

Integral Transforms by A.R. Vasishta and R.K. Gupta, Krishnaprakasan media Pvt. Ltd. Meerat.

Reference Books:

- 1. Integral Transforms by Dr. J. K. Goyal and K. P. Gupta, Pragati Prakashan.
- 2 M. D. Raisinghania Integral Transform, S. Chand & Co., New Delhi.

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-VI PAPER -VII, Elective VII (A)

UNIT	TOPIC	V.S.A.Q	S.A.Q (including choice)	E.Q (including choice)	Marks
1	Laplace Transforms - I	01	01	01	14
П	Laplace Transforms - II	01	01	02	22
III	Laplace Transforms - III	01	01	01	14
IV	Inverse Laplace Transforms - 1	01	01	02	22
V	Inverse Laplace Transforms - 2	01	01	02	22
Total		05	05	08	94

V.S.A.Q. = Very Short answer questions (1 mark)
S.A.Q. = Short answer questions (5 marks)
E.Q. = Essay questions (8 marks)

Very Short answer questions $5 \times 1 M = 05$ Short answer questions $3 \times 5 M = 15$ Essay questions $5 \times 8 M = 40$

Total Marks : ____ = 60

P. R. Government College (Autonomous), Kakinada III Year B.Sc. Degree Examinations, VI Semester - Mathematics Course (Elective VII (A)) - LAPLACE TRANSFORMS PAPER - VII : MODEL PAPER (W.e.f. 2019-20)

Time: 2 Hrs 30 Min

Max. Marks: 60 M

PART-I

Answer ALL the following questions. Each question carries 1 mark.

 $5 \times 1 = 5 M$

- 1. Define Laplace Transform.
- 2. Find $L[t^3e^{-3t}]$.
- 3. What is the Laplace transform of $L\left\{\frac{sint}{t}\right\}$
- 4. Write the Inverse of Laplace Transform of $\frac{a}{p^2+a^2}$.
- 5. If $L^{-1}\{f(p)\}=F(t)$ then what is the inverse Laplace transform of $f^{(n)}(p)$?

PART-II

Answer any THREE of the following questions. Each question carries 5 marks. $3 \times 5 = 15 \text{ M}$

- 6. Find $L\{t^n\}$, n is a positive integer.
- 7. State and Prove first shifting theorem in Laplace Transforms.
- 8. Find $L\{t(3sin2t 2cos2t)\}$
- 9. Find $L^{-1}\left\{\frac{3p-2}{p^2-4p+20}\right\}$.
- 10. Find $L^{-1} \left\{ \log \left(1 + \frac{1}{n^2} \right) \right\}$.

PART-III

Answer any \underline{FIVE} questions from the following by choosing at least \underline{TWO} from each section. Each question carries 8 marks. 5 X 8 = 40 M

SECTION - A

- 11. Find $L\{F(t)\}$, where $F(t) = \begin{cases} 0 & \text{when } 0 < t < 1 \\ t & \text{when } 1 < t < 2 \\ 0 & \text{when } t > 2 \end{cases}$
- 12. Find $L\{\sin\sqrt{t}\}$.
- 13. If $L\{F(t)\} = f(p)$ then prove that $L\{F(at)\} = \frac{1}{a}f\left(\frac{p}{a}\right)$.
- 14. Find $L\{C_i(t)\}$

SECTION - B

- 15. Prove that $L^{-1}\left\{\frac{4p+5}{(p-1)^2(p+2)}\right\} = 3te^t + \frac{1}{3}e^t \frac{1}{3}e^{-2t}$
- 16. Show that $L^{-1}\left\{\frac{p^2}{(p^4+4a^4)}\right\} = \frac{1}{2a}\left(coshat.sinat + sinhat.cosat\right)$.
- 17. Apply convolution theorem to find the inverse Laplace transform of the function $\frac{1}{(p-2)(p^2+1)}$.
- 18. Find $L^{-1}\left\{\frac{p}{(p^2+a^2)^2}\right\}$.